User Preference Through Learning User Profile for Ubiquitous Recommendation Systems
نویسنده
چکیده
As ubiquitous commerce is coming, the ubiquitous recommendation systems utilize collaborative filtering to help users with fast searches for the best suitable items by analyzing the similar preference. However, collaborative filtering may not provide high quality recommendation because it does not consider user’s preference on the attribute, the first rater problem, and the sparsity problem. This paper proposes the user preference through learning user profile for ubiquitous recommendation systems to solve the current problems. In addition, to determine the similarity between the users belonging to particular categories and new users, we assign different statistical values to the preference through learning user profile. We evaluated the proposed method on the EachMovie dataset and it was found to significantly outperform the previously proposed method.
منابع مشابه
Contextual Preference Repositories for Personalized Query Answering
The emerging of ubiquitous computing technologies in recent years has given rise to numerous personalized applications where user preferences and contexts are key features in providing suitable individual product recommendation as well as in personalizing query results according to user profile. Following this trend, it is noticeable the increasing interest of database researchers in developing...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملA social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملImproving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network
The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...
متن کاملXQuery Pattern Method for Semantic Web based Personalization Recommender Service
As the number of web pages increases dramatically, the problem of the information overload becomes more severe when browsing and searching the WWW. To alleviate this problem, personalization becomes a popular remedy to customize the Web environment towards a user’s preference. In this paper, we presented a User XQuery method for personalization recommendation in semantic web that used in the do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006